Перевод: со всех языков на английский

с английского на все языки

правило распределения

  • 1 правило распределения

    2) SAP. ARu, distribution rule, settlement distribution rule
    3) Makarov: distribution law
    4) SAP.fin. dist. rule, splitting rule

    Универсальный русско-английский словарь > правило распределения

  • 2 правило распределения

    Русско-английский словарь по экономии > правило распределения

  • 3 правило распределения

    Русско-Английский новый экономический словарь > правило распределения

  • 4 правило распределения убытков

    1. loss-sharing rule

     

    правило распределения убытков
    Соглашение между участниками системы перевода или соглашение клиринговой палаты, касающееся распределения любых убытков, возникающих в случае неспособности одного или более участников выполнить свои обязательства: соглашение определяет, каким образом будут распределены убытки между соответствующими сторонами в случае вступления соглашения в силу. Также называется соглашением о распределении убытков.
    [Глоссарий терминов, используемых в платежных и расчетных системах. Комитет по платежным и расчетным системам Банка международных расчетов. Базель, Швейцария, март 2003 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > правило распределения убытков

  • 5 правило распределения невязки пропорционально длинам сторон полигонометрического хода

    Cartography: compass rule

    Универсальный русско-английский словарь > правило распределения невязки пропорционально длинам сторон полигонометрического хода

  • 6 правило распределения невязок пропорционально абсолютным величинам приращений абсцисс

    Cartography: transit rule

    Универсальный русско-английский словарь > правило распределения невязок пропорционально абсолютным величинам приращений абсцисс

  • 7 правило распределения невязок пропорционально абсолютным величинам приращений ординат

    Cartography: transit rule

    Универсальный русско-английский словарь > правило распределения невязок пропорционально абсолютным величинам приращений ординат

  • 8 правило распределения невязок пропорционально длинам сторон полигона

    Construction: compass rule

    Универсальный русско-английский словарь > правило распределения невязок пропорционально длинам сторон полигона

  • 9 правило распределения работ

    Quality control: dispatching rule, loading rule

    Универсальный русско-английский словарь > правило распределения работ

  • 10 правило распределения расчёта

    SAP. settlement distribution rule

    Универсальный русско-английский словарь > правило распределения расчёта

  • 11 правило распределения средств ВВС

    Универсальный русско-английский словарь > правило распределения средств ВВС

  • 12 правило произведения

    Russian-English Dictionary "Microeconomics" > правило произведения

  • 13 правило пропорционального распределения ответственности

    Универсальный русско-английский словарь > правило пропорционального распределения ответственности

  • 14 правило пропорционального распределения ответственности

    average clause

    Русско-английский словарь по страхованию > правило пропорционального распределения ответственности

  • 15 система кабельного распределения

    1. cable distribution system

    1.2.13.14 система кабельного распределения (cable distribution system): Электрически связанная система передачи, как правило, предназначенная для передачи сигналов изображения и/или звука между отдельными строениями или между уличной антенной и строением, кроме:

    - сетевых систем для электропитания, передачи и распределения электроэнергии, используемых в качестве передающей среды;

    - телекоммуникационных сетей;

    - цепей БСНН, соединяющих части оборудования информационных технологий.

    Примечания

    1. Примеры систем кабельного распределения:

    - локальная кабельная сеть, объединяющая антенные телевизионные системы и главные антенные телевизионные системы;

    - уличные антенны, в том числе спутниковые «тарелки», приемные антенны и другие аналогичные устройства.

    2. Системы кабельного распределения могут быть подвергнуты большим переходным процессам, чем телекоммуникационные сети (см. 7.4.1).

    Источник: ГОСТ Р МЭК 60950-1-2009: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    1.2.13.14 система кабельного распределения (cable distribution system): Электрически связанная система передачи, обычно предназначенная для передачи сигналов изображения и/или звука между отдельными строениями или между уличной антенной и строением, кроме:

    - сетевых систем для электропитания, передачи и распределения электроэнергии, используемых в качестве передающей среды;

    - телекоммуникационных сетей;

    - цепей БСНН, соединяющих части оборудования информационных технологий.

    Примечания

    1. Примеры систем кабельного распределения:

    - локальная кабельная сеть, объединяющая антенные телевизионные системы и главные антенные телевизионные системы;

    - уличные антенны, в том числе спутниковые «тарелки», приемные антенны и другие аналогичные устройства.

    2. Системы кабельного распределения могут быть подвергнуты большим переходным процессам, чем телекоммуникационные сети (см. 7.3.1).

    Источник: ГОСТ Р МЭК 60950-1-2005: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > система кабельного распределения

  • 16 линия распределения

    1. distribution link

     

    линия распределения
    Линия для передачи пользователям программ звукового или телевизионного вещания, как правило, от центра создания программ, когда не предполагается какой-либо дальнейшей обработки программы.
    Примечание
    Проекты определений терминов "распределение", "первичное распределение", "вторичное распределение" и "репортажная линия" в настоящее время изучаются в 9-й Исследовательской комиссии по стандартизации электросвязи совместно с другими заинтересованными исследовательскими комиссиями. (МСЭ-R V.662-3).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > линия распределения

  • 17 allocation rule

    French\ \ règle d'allocation
    German\ \ Aufteilungsregel
    Dutch\ \ toekenningsregel
    Italian\ \ regola di allocazione (distribuzione)
    Spanish\ \ regla de la asignación
    Catalan\ \ regla d'assignació
    Portuguese\ \ regra de atribuição; regra de alocação (bra)
    Romanian\ \ -
    Danish\ \ regler for fordeling
    Norwegian\ \ allokering regelen
    Swedish\ \ allokeringsregel
    Greek\ \ κανόνας καταμερισμού
    Finnish\ \ kiintiöintisääntö. allokointisääntö
    Hungarian\ \ eflosztási szabály
    Turkish\ \ paylaştırma kuralı
    Estonian\ \ paigutuseeskiri
    Lithuanian\ \ -
    Slovenian\ \ dodelitev pravne
    Polish\ \ reguły alokacji
    Ukrainian\ \ -
    Serbian\ \ правило алокације
    Icelandic\ \ úthlutun regla
    Euskara\ \ esleipena arau
    Farsi\ \ ghanone takhsis
    Persian-Farsi\ \ -
    Arabic\ \ قاعدة التحصيص
    Afrikaans\ \ toedelingsreël
    Chinese\ \ 分 配 规 则
    Korean\ \ 배분 법칙

    Statistical terms > allocation rule

  • 18 тип заземления системы

    1. typology of connection earthing
    2. grounding method
    3. earthing arrangement of the plant

     

    тип заземления системы
    Комплексная характеристика системы распределения электроэнергии, устанавливающая наличие или отсутствие заземления токоведущих частей источника питания, наличие заземления открытых проводящих частей электроустановки или электрооборудования, наличие и способ выполнения электрической связи между заземленными токоведущими частями источника питания и указанными открытыми проводящими частями.
    Примечание - Термин «тип заземления системы» устанавливает специальные требования ко всем элементам, входящим в состав системы распределения электроэнергии. Для составных частей распределительной электрической сети рассматриваемая характеристика устанавливает следующие требования:

    • к источнику питания - наличие или отсутствие заземления его токоведущих частей. Если источник питания имеет заземленную токоведущую часть, то в распределительной электрической сети может быть выполнено дополнительное заземление проводников, которые имеют электрическое соединение с заземленной токоведущей частью источника питания. Если источник питания имеет изолированные от земли токоведущие части, то проводники распределительной электрической сети, как правило, должны быть изолированы от земли или, как исключение, какой-то проводник может быть заземлен через сопротивление;
    • к линии электропередачи - особенности построения защитных и нейтральных проводников.
    Для электроустановок или электрооборудования этой характеристикой устанавливают требования к выполнению заземления открытых проводящих частей, а также к наличию или отсутствию электрического соединения последних с заземленной токоведущей частью источника питания.
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    Тип заземления системы (распределения электроэнергии) обозначается буквенным кодом. Буквы имеют следующий смысл:

    Первая буква устанавливает наличие или отсутствие заземления токоведущих частей источника питания:

    Т
    - непосредственное присоединение одной точки токоведущих частей источника питания к земле.
    Примечание - В распределительной сети, если она есть, может быть выполнено дополнительное заземление PEN-, РЕМ-, PEL-проводников и защитных проводников (РЕ);

    I - все токоведущие части источника питания изолированы от земли или одна из токоведущих частей заземлена через большое сопротивление.
    Примечание - Проводники распределительной электрической сети, если она есть, как правило, должны быть изолированы от земли.

    Вторая буква указывает на заземление открытых проводящих частей электроустановки или на наличие связи между открытыми проводящими частями и заземленной токоведущей частью источника питания:

    Т - открытые проводящие части заземлены независимо от наличия или отсутствия заземления какой-либо токоведущей части источника питания;

    N - открытые проводящие части имеют непосредственное соединение с заземленной токоведущей частью источника питания, выполненное с помощью PEN-, РЕМ-, PEL- или защитных проводников (РЕ).

    Следующие за N буквы определяют, как в системе распределения электроэнергии осуществляют электрическую связь между заземленной токоведущей частью источника питания и открытыми проводящими частями электроустановки:

    С - во всей системе распределения электроэнергии указанную связь обеспечивают с помощью PEN-, РЕМ- или PEL-проводников;

    S - во всей системе распределения электроэнергии указанную связь выполняют с помощью защитных проводников (РЕ);

    C-S - в головной части системы распределения электроэнергии (от источника питания) указанную связь осуществляют с помощью PEN-, РЕМ- или PEL- проводников, а в остальной части системы - с помощью защитных проводников (РЕ).

    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]
     


    ГОСТ Р 50571. 2-94 ( МЭК 364-3-93) предусматривает следующие типы заземления системы (распределения электроэнергии):

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > тип заземления системы

  • 19 подстанция

    1. switching substation
    2. switching station
    3. substation (of a power system)
    4. substation
    5. sub
    6. station
    7. SS
    8. electric substation
    9. electric power substation

     

    подстанция
    Электроустановка, предназначенная для преобразования и распределения электрической энергии.
    [ ГОСТ 19431-84]

    подстанция
    Подстанцией (ПС) называется электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов или других преобразователей энергии, распределительных устройств, устройств управления и вспомогательных сооружений.
    [РД 34.20.185-94]

    подстанция

    Электроустановка, предназначенная для приема, преобразования и распределения электрической энергии, состоящая из трансформаторов или других преобразователей электрической энергии, устройств управления, распределительных и вспомогательных устройств по ГОСТ 19431.
    [ ГОСТ 24291-90]

    подстанция электрическая
    Группа установок и оборудования, размещаемая в здании или на открытой площадке, предназначенная для преобразования параметров передаваемой электроэнергии или распределения её
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    электрическая подстанция
    Электроустановка, предназначенная для преобразования и распределения электрической энергии.
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    EN

    substation (of a power system)
    a part of an electrical system, con-fined to a given area, mainly including ends of transmission or distribution lines, electrical switchgear and controlgear, buildings and transformers. A substation generally includes safety or control devices (for example protection)
    NOTE – The substation can be qualified according to the designation of the system of which it forms a part. Examples: transmission substation (transmission system), distribution substation, 400 kV or 20 kV substation.
    [IEV number 601-03-02 ]

    FR

    poste (d'un réseau électrique)
    partie d'un réseau électrique, située en un même lieu, comprenant principalement les extrémités des lignes de transport ou de distribution, de l'appareillage électrique, des bâtiments, et, éventuellement, des transformateurs. Un poste comprend généralement les dispositifs destinés à la sécurité et à la conduite du réseau (par exemple les protections)
    NOTE – Selon le type de réseau auquel appartient le poste, il peut être qualifié par la désignation du réseau. Exemples: poste de transport (réseau de transport), poste de distribution, poste à 400 kV, poste à 20 kV.
    [IEV number 601-03-02 ]

    Подстанции с трансформаторами, преобразующие электрическую энергию только по напряжению, называются трансформаторными; а преобразующие электроэнергию по напряжению и другим параметрам (изменение частоты, выпрямление тока), — преобразовательными. На ПС могут устанавливаться два и более, как правило, трехфазных трансформатора. Установка более двух трансформаторов принимается на основе технико-экономических расчетов, а также в случаях, когда на ПС применяется два средних напряжения. При отсутствии трехфазного трансформатора необходимой мощности, а также при транспортных ограничениях возможно применение группы однофазных трансформаторов. Подстанция, как правило, состоит из нескольких РУ разных ступеней напряжения, соединенных между собой трансформаторной (автотрансформаторной) связью;
    [ http://energy-ua.com/elektricheskie-p/klassifikatsiya.html]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > подстанция

  • 20 система кондиционирования воздуха

    1. air conditioning system

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > система кондиционирования воздуха

См. также в других словарях:

  • правило распределения убытков — Соглашение между участниками системы перевода или соглашение клиринговой палаты, касающееся распределения любых убытков, возникающих в случае неспособности одного или более участников выполнить свои обязательства: соглашение определяет, каким… …   Справочник технического переводчика

  • Правило наибольшей избирательной цифры — правило распределения депутатских мест при пропорциональной избирательной системе, согласно которому по одному месту из числа оставшихся незанятыми на основе избирательной квоты получают те партии, за которые подано наибольшее число голосов по… …   Финансовый словарь

  • ПРАВИЛО НАИБОЛЬШЕЙ ИЗБИРАТЕЛЬНОЙ ЦИФРЫ — правило распределения депутатских мест при пропорциональной избирательной системе, согласно которому по одному месту из числа оставшихся незанятыми на основе избирательной квоты получают те партии, за которые подано по данному округу наибольшее… …   Юридическая энциклопедия

  • ПРАВИЛО НАИБОЛЬШЕЙ ИЗБИРАТЕЛЬНОИ ЦИФРЫ — правило распределения депутатских мест при пропорциональной избирательной системе, согласно которому по одному месту из числа оставшихся незанятыми на основе избирательной квоты получают те партии, за которые подано по данному округу наибольшее… …   Энциклопедический словарь экономики и права

  • Правило Тициуса — Боде — И. Д. Тициус …   Википедия

  • ПРАВИЛО СТАБИЛЬНОСТИ ВОЗРАСТНОЙ СТРУКТУРЫ — правило, согласно которому любая природная популяция стремится к установлению стабильной возрастной структуры. Если это стабильное состояние из за временного притока или оттока особей в другую популяцию нарушается, то при восстановлении… …   Экологический словарь

  • Правило Клечковского — (также Правило n+l; также используется название правило Маделунга)  эмпирическое правило, описывающее энергетическое распределение орбиталей в многоэлектронных атомах. Правило Клечковского гласит: Заполнение электронами орбиталей в атоме… …   Википедия

  • Правило n l — Правило Клечковского (также Правило n+l; за рубежом обычно используется название правило Маделунга)  эмпирическое правило, описывающее энергетическое распределение орбиталей в многоэлектронных атомах. Заполнение электронами орбиталей в атоме… …   Википедия

  • Правило Тициуса — И. Д. Тициус …   Википедия

  • Распределения —         одно из основных понятий теории вероятностей и математической статистики. Р. вероятностей какой либо случайной величины, т. е. величины, принимающей в зависимости от случая то или иное численное значение, задаётся указанием возможных… …   Большая советская энциклопедия

  • ПРАВИЛО СЕМИДЕСЯТИ ВОСЬМИ — RULE OF 78Порядок расчета, к рому следуют некоторые фин. компании для распределения процентов по ссудам по месяцам года. Он основан на использовании способа пропорционального помесячного распределения суммы, при к ром от заемщика должны поступать …   Энциклопедия банковского дела и финансов

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»